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l. INTRODUCTION
In this paper, we consider the following nonlinear Klein-Gordon equation
coupled with Maxwell equation:

e — AY = —2ieqY, — iepu + € |@|*Y — 2ieVy - A

—é |AF Y —ieg divA-m @+ W (ip). (1.1)
A -AA =elm(PV ) -e*|[Y|?A - Vo, - VdivA. (1.2)
-0 = elm(Pde) - €| [Pe + divA.. (1.3)

where g :RxR*—=C, A:R*xR* =R ¢:RxR* —R m=>0,e €R
and i denotes the unit complex number, that is, # = - 1. Moreover, W (s)

is a regular real valued function which is extended to the complex plane by
setting Wi(y) = Wi( m)ﬁl for Y € C.

In this system, ¢ represents an electrically charged field and (¢, A) is a
gauge potential of an electromagnetic field. System (1.1)-(1.3) describes the

interaction of a particle with an electromagnetic field in the following way.
On one hand, the field ¢ produces a current which acts as a source for the
electromagnetic field. On the other hand, the electromagnetic field influences
the behavior of the particle through the latter’s electric charge. Here the field
i is interpreted as the quantum wave function of the particle. (See Section
2 for the derivation.) We refer to [14], [16] for more physical backgrounds.

To our knowledge, there are only few results concerning the Cauchy prob-
lem associated with System (1.1)-(1.3). In [8], [13], the authors investigate
the existence theory for the linear Wave-Maxwell equation, that is for the
case m = 0 and W = 0. In [15], existence results for {1.1)-(1.3) are estab-
lished under several conditions on W . The aim of this paper is to obtain a
local existence theory for Equations (1.1)-(1.3) by using a standard energy
method and a symmetrization process. Note that global existence cannot be
obtained by standard arguments and thus seems out of reach for the moment.
However, in this direction, one can look for particular global solutions, such
as standing waves of the type:

Wit x) = u(x)e™ (w € R), At x) =0 and @(t, x) = @(x). (1.4)
Plugging (1.4) into (1.1)-(1.3) leads to the following elliptic system:

Au+ m?  (w+ep)u=wilu).
2 2 2 (1.5)
A + e"u"p= —ewu".
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The existence of solutions to System (1.5) has been studied widely. (See [2],
[3], [7], [2] and references therein.) The stability of standing waves has been
also considered in [4], [5], [15]. Especially in [4] and [5], the authors showed
that the standing wave is stable when the potential term is positive, that is,
”%52 —W (s) =0 for s =0. However some challenging problems, for example
the (in)stability for large e, are still left open.

System (1.1)-(1.3) has a so-called gauge ambiguity, thus we need to choose
a suitable gauge condition. In this paper, we impose the Coulomb condition,
that is, we look for a solution A which satisfies

divAa = 0. (1.6)

In this setting, one has|rotA|* = /& ? which seems to be useful for the
stability analysis of the standing wave.

To state our main results, we introduce the following notations. First we
impose the following initial conditions at t = 0:

Y(0, x) = lf—’m](X); Y0, x) = w{IJ(X};
L A0, x) = A)(x), A0, x) = Ay(x), (1.7)
dTVAEQJ =0, diVA{l} =0.

Moreover we assume that for some m € N with m = 2,

h':"m: € m+1(R3; C}) d"[lh € Hm{R3) C:';

A(o} = HmH{RS, R3} and Au} S Hm[RB; RB:’; {1.8}
where H"(R3?, ) denotes the usual Sobolev space. We also introduce the
space %*(R3) which denotes the completion of C§°(R3) with respect to the
norm: Nldl? := R: U 2 dx. We recall, by the Sobolev inequality, that the
space D“[ﬁ;] is continuously embedded into L(R3).

For the nonlinear term W, we assume that

(A) w e c™YC,C) and W(0) = WI0) = 0.

Some typical examples of the nonlinear term W are the power nonlinearity
Wi(s) =+% 53" with [p] = m + 1 ([p] denotes the integer part of p), or the cubic-
guintic nonlinearity W (s) = 's® —4s° gor A >.0, which frequently
appears in the study of solitons in physical literatures. (See [12], [14], [16]
for example.)

In this setting, we have the following result.

Theorem 1.1. Suppose that (A) holds and (Y, Y, Ap, Ap) satisfies
(1.8). Then there exists T* >0 such that System (1.1)-(1.3) with the ini-
tial condition (1.7) has a unigque solution (Y, A, ) satisfving the Coulomb
condition (1.6) and

¢ €C (0,T*),H™ nc* (0,T*),H" ,
AEC (0,T*), H™ nc' (0,7, H" ,
@€EC[0,T],DY, VpeC (0,T*),H" , @, €C (0,T*), H” .

In [8], [13], [15], the authors used Strichartz estimates and space time
estimates for null forms to obtain a local solution. In this paper, we adopt a
different approach. More precisely, we apply the strategy developed in [6] and
our proof is based on the standard energy method for symmetric hyperbolic
systems. We emphasize that our approach is much elementary. We also
expect that our method is applicable for the Cauchy problem associated with
the nonlinear Klein-Gordon equation coupled with Born-Infeld equations.
(See [10], [18].)

This paper is organized as follows. In Section 2, we introduce the deriva-
tion of System (1.1)-(1.3) and exhibit some conservation laws. In Section 3,
we give several estimates for the elliptic equation (1.3). We prove Theorem
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1.1in Section 4. Firstly, we rewrite System (1.1)-(1.3) as a symmetric hyper-
bolic system in Section 4.1. Secondly, in Section 4.2, we prove the existence
of a unique local solution by using the energy method.

Notations. In this paper, we use the following notations. Let 8 = (683, 62, 85)
e a multi-index of order |6] = 6, + 6; + 65 and define

Dsu = ol6ly
XX TOR
12 s

For a non-negative integer s, we denote by Du the set of all partial space
derivatives of order s.

2 Derivation and conservation laws

In this section, we briefly introduce the derivation of System (1.1)-(1.3) and
derive some conservation laws. Now we consider the (complex) nonlinear
Klein-Gordon equation:

U= B = -m*P + W)

and the corresponding Lagrangian:

b=t 1 P IV0F - mol + W) = = T0 +mlgl +wiv)
(2.,
where @, =_:;h, a=0,1,2 3 and x, = t.

Suppose that ¥ is an electrically charged field. Then ¥ must interact
with the Maxwell field. Let E and H be the electric and the magnetic fields
respectively, and assume that they are described by the Gauge potential
(¢p, A), A = (A4, As, Ay) as follows:

E=Ve+A, and H= rotA.

By the gauge invariance of the combined theory, the interaction between
and (¢, A) is given by exchanging the usual derivatives d, with the gauge
covariant derivative D, which is defined by:

D, =0, —ieA, A,=(—@, A, A, A;).

Thus from (2.1), we obtain the following Lagrangian:
l . 2 . 2 2 2
L, = 5" Y +iepy " —- Vi —ieAd " —m |P|” + W(Y).

Moreover since the Lagrangian of E and H is described by
l 2 2 l 2 2
L =3 [EP-[H* == |[Vo+A P - |rotA]® ,
the total Lagrangian L = Ly + L is given by

L=l“g i i@y = Vi —ieAdr T — m*lYl® + W()

1 2
+ Ve + Al
2

2
rotA- . (2.2)

P =
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Computing the Euler-Lagrange equations for (), A, ¢), we can obtain System

(1.1)-(1.3). Moreover since the electromagnetic current 3% = e Im(¢D*y) is
conserved, we have the following conservation laws:

J

d _
dt m €IM@U) +€YPe dx=0 (charge),

d _
= elm(YVy)-e|YPA dx=0 (momentum).
dt g
We refer to [11] for more details.
Finally we derive the energy conservation law which we will use later on.

To this aim, we multiply 1,61- by (1.1), integrate it over R® and take the real
part. Then we obtain

j- :Q l|¢‘ Iz lV 2 m? E_W{w} —EElezRE{lthﬂ) (23)
IR R PTR STT : -
+ e AP Re(Ydr) - Im eoubiie + 2eB:V b - A + eddiedivA  dx = 0.

l]lext multiplying A, by (1.2), we also have
»d 1 1 _ -
= SIA P+ T|rotAl*? -elm(yVi)-A +92|q‘.v|2A-A +Vo-A dx=10,

t

s Ot 2 2 ¢ ¢ t ¢
(2.4)

where we used the fact
rotA - rotA, = div(A; x rotA) + A, - V( divA) — A, - AA.

Finally multiplying —¢, by (1.3), we get

Vs

_ 1 7 - . -
~JVel* +elm()e; - e Tl po. + . divA,  dx=0. (2.5)

R3 dt 2
Summing (2.3)-(2.5) up and applying the integration by parts, we obtain
d -1 , 1 , m* 1 » A ;1 2
dt m I IVUL + 1l — W)+ I rotAl + 1AL — V|

e’ 2 2 l 2 - -
- Slelwl® + J1A1 el +eImVY) - A+Ve: At o dx = 0.
v,
Using again (1.3), we derive the following energy conservation law:
d

0= —tE(ifJ, A, o)(t)
I | . 2 1 2 m* o,
= e ieell LT vy —ieagl+ Ul — W)
1 2 1 2”
+ 2|r0t;'3;| + 2|Ar+vw| dx. (2.6)

(We can derive (2.6) by applying the Noether theorem to the Lagrangian L
of (2.2). See [5] for this topics.)
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3 Estimates for the elliptic part

In this section, we give several estimates for the elliptic equation:

-Dg + €' |YPe = elm(Piy). (3.1)

Throughout this section, we suppose that ((t, ) has a compact support for

each t € [0,T] and ¢ € C= (0,T) x R® . The estimates for general ¢ can
be obtained by a density argument.

In order to obtain some estimates for ¢., we differentiate (3.1) with respect
to t to get

-Ag, + Yo, + 2¢* Re(Pie)o = eIm(Ye). (3.2)

Moreover, taking the complex conjugate of (1.1), multiplying the resulting
equation by ¢ and taking the imaginary part, we also have

Im(Yde) = Im YAY + 2ied Vi A + 2eRe(YPdo +e ) fo.
Im div(y V) +2eRe(¢V§)-A + 2eRe(Pic)o + ely o,

div Im(yV§) + |[¢2PA  + 2eRe(Pyi)o + e|ly e, (3.3)
Here, we have used the fact divA = 0. From (3.2) and (3.3), we obtain

-Ag, = ediv Im(YV ) + [PPA . (3.4)
In this setting, one can prove the following lemma.

Lemma 3.1. Let ¢ be a solution of (3.1). Then for m € N with m = 2,
@(t, *) satisfies the following estimates for each t € [0,T] :

() IVt Mm@s) = Callge(t, MWpsmmsy,
(i) No(t, Miw@s) = Callge(t, Ypmms),
(i) 1@ty Mpm(asy = CalY(t, )12, gy

Here C1 and C; are constants depending on Wl gmes, llym only, and G
depends on llYllymea, e and IVAIlL .

Proof. (i) Let s be a non-negative integer with &£ m. First we apply D°
to (3.1) and take the L*inner product with D°p. Using an integration by
parts, we have

IV (D)7, + e’ D*([YPe)D*pdx = e Im D*(Yi:) D*pdx.
Rs3 R3
Now we observe by the Leibniz rule that

> _
D (|¢*@)D°p = 2 6 Re(wD§)D*-v oD%
|8]+|v]=s
> 8 _
=2|¢)PID°p)* + 2 Re(yD")D°~ D% ¢.

6]+ y]=s.|v{=0
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Thus one has J-

V(D)% + e’ |YP|D°oP dx

R
Z 8 5
=C I |g||D"||D | |D@| dx
|8]+|v]=s.|v|=0
>
+C RO' | |0 || D] dx
|3|ﬁ|=s R
=C oY Yool YD, .
61+1Ks =0
+C oYl sIDe =Y, D%l ;s
16]+|vl=s
> s e
=C DY D%V IR, + Tlltﬁﬂstpllfz
Bl+=s=0 psry 12y LIV (Do) |
> lpwliz, ci, L2
18] +|v]=s

By the Holder and the Sobolev inequalities, it follows that
> . >
ID"YD*ell?, < 10YgII1% 1D ell?

|8]+lv|=s,|v|=0 |8]+|y|=3P)=0
=C oY Yi* IV (D°-Ye)li*,
H L

|8]+|¥|=s.v|=0

= CllY a1V,
ID YN ID° Y’ = CllI? ca ligel,

H*
|8l+[vl=s

from which we deduce

IV@ll%,m = C NP3Vl sy + P12 s ell?,, (3.5)

MNext we multiply (3.1) by ¢ and integrate the resulting equation over R3.
Using again an integTstion by parts, we ﬁet

/

IVol*dx+e*  [UF|ol* dx < lel  |y||glle| dx
R3 Re jb 1 J- 1

<lel  [¢[lel?dx ) | dx
3

[
e’ 2 1 2
=7 . @10l dx + Sl Za sy,
This implies that IV gll,z = CWy, k. Then by induction and by taking into
account (3.5), one can see that (i) holds.
(ii) By the embedding W**(R3) <= L=(R3), one has
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=3
< 0o
gl = C o ox; + Nl 6
j=1
L
[
i 2
ox B¢
i k 12

and the Sobolev inequality, it follows that

Moreover by the Calderon:Zygmund inequality:
lohe = C g e STV = € Nagl,s + IVl .
=1 0% g2

From (3.1), we dna-rima-v

lpll, . = CIl iyl 2 + W]l 2 + IVl -
= C Il el ll 2 + NPl3slel s + Vel .

Since H"(R3) «— L=(R3) for m = 2, it follows that Il ;= = CIP llgem.
Thus from (i), we get

ol = C NPpllygmllellz + NPUZ o lellz + Uipellz < Cllell, 2.

This completes the proof of (ii).
To prove (iii), we first observe that (3.4) can be written under the form:

0. = (-B)-'3 (-B)-'ediv IMWVE) + WA (3.6)

Now we recall the Hardy-Littlewood-Sobolev inequality (See [17], P. 119):
(=)= Ff Mo mrry = ClUFNlLogrr)

forO<v<N,l<p<g<cocoand IE= "-p— ¥, Applying D* to (3.6) and
using the Hardy-Littlewood-Sobolev inequality with N =3, v=1,p =%

s
and g = 2, we get

] . . ) N
1D @l = C(-A) Zediv Im(D(YVYP))+DI|Y] A) ~ »
L5
_ 5 T
=C ID°WVd)laip (1G] AJI ¢
Furthermore, direct computations give
_ == _
oWVl g = C DY YD~ (V)i g
1615fud=s
=C DY Yl MDY (V)2
1615fud=s
=C NDY Yl 2 1D%=Y (V )l 2
18]+¥|=s

Cllg s e Mggsez,

IA

>
Io*(|¢f Al e =C IDY(|@1))D°All 4

|614g4=s

=C Iov(| @) s 1D°7Y Alls
If'ilg':l=5 t

=cC Nl s DY YUl 11V (DY Al .2
|Bl+]vl=s

= Cllgll g Nl psea TV Al s,

from which we deduce that .l ym = E‘IIwIIHm. [
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Next let (¢, A) and (tﬂ, A) be given such that

- 2 - 2
(g, ¥)e Cc(0,T),HYR) ,W,¥)eE C(0T)LR) ,

(VA,VA)e C (0,T), LR~

and consider the unigue solution ¢ and 6 of (3.1) with ¢ and d; respectively.
In this context, one can prove the next lemma which provides estimates on

- 0.
Lemma 3.2. For each t € [0,T], the following estimates hold :

(i) NV (@-@)(t, Mors) = Ci M- Pl gy + W, - Gell 2rs)
(i) W@ - @)t Mesre) = Co MY - Pllpamey + M, - Pell 2mey

(iii) (e - @e)(t, Mizry = Cs NP - Pllpgis) + IV (A - A)ll 2y
Here (3'1 and éz are constants depending on WPlly, N2 only, and 63

depends on Nl Nl 2 and IV AL ,-.

Proof. The equation satisfied by the difference (p—qs is

-A(0- ) + e (|W]Pe - |00) = elm(Pg: -
We observe that

(100~ 10120) (@ -@) = o - ol + 0a(d - ) - b),

de). (3.7)

(W08 N 0-0) = (=& No-00) +o(b-§) (W £e)+ el -§)@-0).
Thus multiplying (3.7) by ¢ - 5 and integrating the resulting equation over

R3, ofie gets |
vo- L -]
R (¢ @) dx+e wfp Yo *dx
=5
) ei’j lollolly-dFPdx+e |y, -dellpo - | dx

< it R

i o
& - [Ye[l¢ - &llp - o] dx
+e |<P|Iw-¢||w:-!ﬁr|dx+e

= cnm?;néuﬁuw ~gll 2+ e —Rw,uq + SZIRS Yo - Y] 2 dx
+ Cllgl sl - Gl s, - Pell 2 + CUP NN - Pl 5Nl - @l 6.
By Lemma 3.1, it follows that
IV (e- @, = C Nl Wl - 1P, + e - el
+ Ml 2 = Gl gl - Pell 2 + M2 )l - G112,
=C M-I + e - Gell?,

This completes the proof of (i), and (ii) follows from (i). We can also prove
(iii) in a similar way as in Lemma 3.1. ]
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4 Solvability of the Cauchy problem

In this section, we prove Theorem 1.1. The proof is divided into two steps.
Firstly, we reduce the original system (1.1)-(1.3) to a symmetric hyperbolic
system. Secondly, we adopt the energy method of [6] to obtain a unique local
solution.

4.1 Reduction to the hyperbolic system

In this subsection, we rewrite System (1.1)-(1.3) into a hyperbolic form.
First, in order to guarantee that the Coulomb condition holds for t € (0,T),
we introduce the projection operator P on divergence free vector fields. More
precisely, we define P: L*(R3) = (}R?) *byP = (-A)-*rot rot. By

direct computations, one can see that if divA =0, it follows that PA = A.
Applying P on Equation (1.2), we obtain

QA =P elm(yVy)-e*PLPA . (4.1)

It is easy to see that when the initial data Ag, and Ay are divergence free,
the Coulomb condition holds for all € (0,7 ). Indeed putting B = divA,

one has from (4.1) that QB = 0, B(0,x) = 0 and B0, x) = 0. Thus it
follows that B=0 for all t > 0.
Decomposing ¢ = (1 + i, and A = (5, Yu Us) with ¢, : R xR®* — R,
System (1.1), (1.3), (4.1) is reduced to the following set of equations:
Qu; = 2e@(,); + e, + €@ Py +2e (P2), b + (Y2)e Ya + (P2)e Y5

— Yy + g + Y21 — ms + W)
Qi = —2e@(Pn) — e@uhr + €7@ Py — 2e (Pa)e Y + (P1)x Py + (Y1) s,
— (Y + g + YAy — mPy + WIY).

z -
Qs =€ Py Yalthade — oy, — W2+ P2)2er -
k k 1 2

k=1

> |, -
Qu.=e Pau  Palpa)e — el —eld + & )aus -

k=1 & k 1 2

Q[psze fPBk, wl[d}ﬂxk — Pa(th)ux —E{(ﬁ +’1Lé]w2+k .

Here P = (Pu)igkes, Pi @ L*(R?) — L*(R?) is a linear operator defined by
Pi =6u + RRe (, k=1,2 3)

and R, : [}(R3) = L*(R?) is the Riesz transform given by

9
Ry =75 ()=
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By the Fourier transform, it follows that u= R ;'E Flu] foruF

L*(R?) and & € R, This implies that R; is bounded™rom L*(R3) to L*}(R?)
and hence so does Py.

Next we introduce (): = (ies (i = 1, -+- 5) and write the equations
satisfied by ; (i =6, --- 10)

> 9
W)y =) = (W) +2epd +ep +eQ*Y —m g
6t 1t 7 t 2 1 1

- dXJ 1 >y
J=1 Ed
+ W) + 2e —'&wz e (Yh + i+ )
o1 dx). + 3 4 5 1
> 9
(@) =(p) = W) -2e0p —eoy +QY —map
Tt 2t dX 2 >y 6 t 1 2 2
=1 =
>y
+ Wi(y) - 2e i;tb 247 — € (U + 42 + Y2),.
j=1 =Y
(@) =) = (W)
8t 3t Ox; 3

> , -
+e * Pu Wil — (), —els+ P )ane -
K K 1 2

= kgl

(W) =(g) =
9t 4 tt

=1

(@)
dXJ 4 >
= -
+ e P2k ¢}1{¢;2)x — {le(ipl}x - E(iﬁfz + wz}w2+k -
K K 1

2

(@) =(p) =
0 5t

+e P3-'<J Pa(P2)x — o), —eldz + wz}wzﬂc,-
& K 1 2
k=1

Finally we introduce (Y1) = P11, (P1)e = P12, =+, (Ps)e = Y25 so that
the equations on g -+ , Y15 become

>4}
(W) = ax? 104)+ 260, + ey + €Yy — Py + WI(Y)
=1 7
=2 .
+2e Yraglay - WP 02

J=1
>0
(W)= ol¥ 1su) - 2000 —eqpubite @ W — M + WiY)
=1 7
=

— 2e YiowiPzas — 32(1#23 + U—'i* UD25)¢'2-

/=1 2 2 h
> 5 = (@ ¢ —y ) —e(yp” + )y .
= P
(!ps ]r ) dxj-(w 16+j ) +e 1k 1 13+k 2 10+k 1 2 24k
= a f';j }
(W)= — (¢ )+e P (gwy —y ) —ely’ + i)Y
ot Ix: 19+j 2k 1" 13+k 2 10+k 1 2 2+k
j=1 o k=1
_o = e s urry
(do) = dx_{wzzﬂ') +e P]J( (Wl 134k —w2w10+k}_e(‘p 1""") ;‘p 24k "
j=1 4 k=1
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Pointing out that (). = ) ¢, (Y12)e = 5 We =++ and (gas)e = 3 Yo
and defining U = (¢, *++ , 5), we can see that System (1.1), (1.3), (4.1)
can be written into the following symmetric hyperbolic form

au EA dy
dt - jdxf + F(Uf (pf‘pf)' {4'2)

=1

Here 4;(j = 1, 2, 3) is a symmetric 25 x 25 matrix which is defined by

( B 7 8 9 10 10+ 13+ 16+ 194 22+j\
I I

6 | 1 |
7
| 1 |

10 1
A=59 | 1 |

1045 1

134§ 1 |
164 1 }
1945 1

224§ 1

and the nonlinear term F(U, @, @) =" fu, fo . [ is given by

fi=Wsy (i=1,----5).
fo = 2e@y; + e@u, + 9Py - MYy + WiY)
>
+ 2e Yasiyoiy - ez(w23+ 4’24"' ¢’25)w1-
j=1
fr = —2eqys - ey + €27, - M, + Wi(Y) (4.3)
=
—2e Y104P245 _e2(¢23+ ‘1124"‘902!4’2-
j=1
Z »
frvi=e  Pik (W11 — Yahion) - e(P® + P2)P2uk (=123)

1 2

»

fi=0 (i=11,---,25).

Moreover, by using the vector U, Equation (3.1) can be rewritten as

—Bp+e (s * 2o = elrths - ) (4.4)

To conclude this section, we write the final system derived from (1.1)-(1.3)

as follows
U ,9u
di_ - 1 de_ +F(Ua(p; (Pr}a (45]
= ')

A+ e (Pr + 2o = e(Yrds - ).
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4.2 Unique existence of the solution for the Cauchy
problem

In this subsection, we show that the hyperbolic system (4.2) has a unigue
solution in a suitable function space. To this aim, we argue as in [6]. Firstly
we consider a linearized version of (4.2) and prove the existence of a unigue
solution by a standard energy method. Secondly, we study the corresponding
solution map § and show that S is a contraction mapping on a suitable ball
provided that T is sufficiently small. We will see below that this procedure
gives the unique solution of (4.2).
To this end, for m € N with m = 2, we suppose that

W) € H™HR?, C), ¢y € H"(R?, C),
Ap € H™(R? R?) and A, € H"(R?, R?)
so that ;) (i=1,---, 25) satisfy
Gron P20, Pso € H™HRY), s, )+, Pasio € HM(RP).
Here we put

U:»':cn = wm; "'fl;"-’z:up Jt"{0} = (s (o) s (o) Ws {0}},

if"{l} = lﬁ's:o: + -"li"?:u:, A.[l} = (d—"sl[o}, l.bg{u}.. Q'Jm [n}};
':‘Pl:uj}m = ‘.011:01» (Y1 tO}}xz = ‘J’-’lz{u} ey, (lf-"s:cn]x: = s (o)

We denote X = H™R3) “x H™(R3) *® and U o) = (@ 100 ** » Was0))-
=

Take U, € X arbitrarily and put R=2 I oyllyem. For T >0, we set
i=1

- [3 25 -
Br:= U(t, x)= it x) EC (0, T),X ; sup gt My~ =R .
i=1 r=(0,T)
We are going to find a solution of (4.2) by the following procedure. First for
given U € Bi, we obtain ¢ by solving the elliptic equation (4.4). Next we
define the space ¥, =C (0,7 ),X and the mapping

S:¥r—— Y  S(U)=V,
where V is a unique rlution of the following equation.

7 F(U, ¢, ¢.)
= i - + , (pl tp e
ot A o x ‘ (4.6)

L =1 i
V(O, x) = U (g)(x).

Note that the existence of the solution V to (4.6) is straightforward (see
Lemma 4.4 for more details). The idea is then to apply a fixed point theorem
to S by getting estimates on V through the use of energy estimates.

To this end, we first apply Lemma 3.1 to obtain bounds on ¢, which
allows us to perform estimates on the nonlinear terms F as it is proved in
the next lemma.

Lemma 4.1. Let U € Y, be given and ¢ be the corresponding solution of
the elliptic equation (4.4). If U € Bg, then the nonlinear term F = '(f))
(i=1,-++,25) defined in (4.3) satisfies

AU, @, @llcqonum = C(R),
where C(R) is a constant depending only on R.
Proof. First we observe by the definition of F = '(f;) that
Ifillyem = Nerssillygm = R (i = 1,++- ,5) and lfillym =0 (i =11, --- , 25).
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Next we have

=
||f?+J||Hm = IEI "ij(plw13+k“Hm + Ileka{plﬁl—R"H’“

k=1
+ llePuiyillm + lePudis iy (j=1,2,3).
Since P, is a bounded operator from L*(R?) to L*(R?) and H™(R?) is a
Banach algebra for m = 2, we get

"ij{-l—'lztpl3+k”H”’ = C"[}.‘a‘l"zf.,'m “[P]_g-g.k”Hm i CR
Pyt 1foiillym = Clpillym Mo llym = CR

A

2
31

Thus one has ;
Wfrllum < C(R*+R) (i=1,23).
Next by the definition of f;, it follows that
I|f6“Hm =C II‘P‘-}‘-’?”H"' + I|fpf¢12”Hrn + "fpzw]_"”m + Il-!f.l]_"Hm

3 NrzeatPzsillim + 0 Wallym  + MW I{)

2+k
k=1
By Lemma 3.1, we have
> > =
ol ym = 1D ()l 2 = C DY D%~ 1l .2
s=m s=m |8|+|y]|=s

> > . > > R
= C oo 10Dl + € o DY @D Yl
= C ol =Nl ym + UV @l e lh5 1l yem
< Cllllye NNl = CR 2
X > > - > > R
le“Yillym = C llp D" Ysll2 + C lipDY @D 51,2
s=m |6|=s s=m |8]+|y|=s,|v|=0
2
= C"CP"{_QW “szIH"’ + C"(,OIISLOD”V(,OIIHIH "d)z"Hm
= Cllgllyn Np2llym = CR,

2

ozl ym < l@ellym gpallym = Clllym Npallym = CR .

Moreover from (A), we also have
Iwiig)llym = Cllgllym = CR.

(See [1, Proposition 2.2, p. 101].) Thus we obtain lfsll,: = C(R). In a
similar way, one can show that lIf;ll;- < C(R). This completes the proof. []
Lemma 4.2. [et U, U € Y be given and , ¢ be the corresponding solution
of the elliptic equation (4.4) respectively. If U € Bg and U € Bg, then it
follows that

IF(U, @, @) - F(U, @, @)l L==(0,7),.2) = C(R)IU -~ Oll (0,7, 12)-

Proof. By Lemma 3.2 and from the continuous embedding H™(R3) «— L=(R?)
for m = 2, we can see that the claim follows. |

Now we are ready to prove the existence of a unique solution to the
Cauchy problem: .
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‘{ U * 4y
df = A_,r — + F(Ur (PJ fpr]z

. ox;

Uso oot

U0, x)=U :n}(K)

(4.7)

coupled with the elliptic equation:

2 2 2
-Ap+e (P +r)e = e(Par — Pathe). (4.8)

The proof consists of four lemmas.

Lemma 4.3. Let U € Bz be given. Then there exists a unique solution

e=pU)ec (0,T), D*(R?) of (4.8). Moreover @ satisfies the estimates
of Lemmas 3.1 and 3.2.

Proof. Suppose that ¢, ¥, € HY(R?) and Y &, € L}(R%). We define a
bilinear form A : D**(R3) x D**(R3?) = R by

Alu, v) := Vu- Vv +e*(i+ ¢ luvdx.
(=]
Then by the Holder and the Sobolev inequalities, one has
|A(u, V)| = IVull2IIVVI: + e]* Nigyll]s + ol llulls
Vils < Cllullps2 Vips2,
Nulb.z = Au, u).

Moreover putting g = e((1)7 — Y2yg), we also have

gl § = C (gl =Ml 2 + Nl gl 2)
< C (Il N Mo+ gyl el N, ) .

This implies that g € L3(R?) «— (D**(R3))*. Thus by the Lax-Milgram
theorem, there exists a unique solution of A(¢p, v) = ( g, v) forallv € D**. [

Next we consider the linearized version of (4.7):

v ¢, v

at - de_ + F(U) @, (pf]f (49}
J=1 i

V(0, x) = U g(x).

Lemma 4.4. For given U € By, the Cauchy problem (4.9) has a unique
solutionvecC (0,T),X .

Proof. The proof follows by the standard existence theory for the hyperbaolic
system. (We refer to [1, Proposition 1.2, P. 115] for the proof.) ]

Now by Lemmas 4.3-4.4, one can see that the mapping S is well defined.

Lemma 4.5. For sufficiently small T+ > 0, one has 5(Bg) = Bg. Further-
more, there exists k € (0, 1) such that for any U, U € Bg, one can write

IS(U) - S(U)leeqo,74),22) = KNU = Ul cogo,7),22). (4.10)
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Proof. We apply the standard energy estimate method. To this aim, let s
be a non-negative integer with s#1. We apply D° on (4.9) and take the L%
inner product with D'V to obtain J_

Q l 5 2 > j- av s s
3 s - ® .
ot rs A ox/
D V| dx= D D Vdx+ D F D Vdx.
2 I I j=1 R Rz
Since A; jE symmetric and consists of tjonstant elements, it follows that
oV
D AT -DWVdx-= A i.':JS\.f - D°V dx
R: i Ax/ J . i Axi
d
= DV - (A P°V)dx
s Ox; 9
= — DV -— (A D*V) dx
_[ R3 dXJ. !

OV
=— D'V-D° A/ dx

i

showing that _[ R 7 ax
s
& Aoy D'Vdx =0
R3 I axi
As a conseqguence, we get
g 1 2 ;s s 1 , L1 2
o QIDTVIE L = ID°FILID VI = z-uos\/{r, D2, + 2IIDSFIIL2.

Now we put y(t) = 2IID°V(t, -)II?.. By Lemma 4.1, one has
2 L

vi(t) = y(t) + C(R),
from which we deduce, by the Gronwall inequality, that
y(t) = y(0)e” + C(R)(e” — 1) for all t € (0, T).

Choosing T+ > 0 small enough, we derive

5 5 2 T* T* E
sup D V(L -)llz = IID Ugllze + 2C(R)(e —1)

tE(0,T *)

A R2 ' ™ 3
= —&" +2C(R)(e’ 1) = R.
4

This implies that S(Bg) < Bg.
Writing the equation satisfied by V -V and arguing as above, one has

a1 - 1 ~ 1 T
5t z-uw—vnr,-)uiz < I v—vniﬁ;uF(u, 0, @) -F(U, 0,0 )72

Again we put z(t) = I(V - V)(t,*)I?.. Lemma 4.2 and the Gronwall
inequality ensure that : ’

z(t) = z(0)e” + CIU-0IP . (or.(g T1):
Notice that z(0) =;IIV(D ) —\}[o,-)lliz = ;Ilum] - U(m"zi = 0. Thus

o

taking T* smaller so that 2C(R)(e™” - 1) =: k <1, we get

IV =) (8, )l oo o, 72,22y = KI(U = O)(, )l oo, 74, 22)-
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This completes the proof. |

Now since § is a contraction mapping, there exists a unique U € B, such
that S(U) = U. This implies that U is a solution of (4.7).

Lemma 4.6. U js the unigue solution of (4.7).

Proof. The proof is a straightforward consequence of Estimate (4.10) and we
omit the details. 1

Proof of Theorem 1.1. Let ¢¢p and U = (U})1=j=25 be the unique solution to
Equations (4.4) and (4.7). We recall that @ € C (0, T),D*?(R®), U, €
c (0,7), H"(R?® forallj = 1,---,5 and U, € € (0,T), H"(R?) for

J =6,--+,25. Define U= (Gj Jizj=25 by
Gf = U_.") '{-‘}j+5 = (Uf}f forj = 1} s 5}
Ui, U, Uiz = VU, Ui, Uss, Uss =V U,,
al?, C’:s, U = VU, l}zo, 621, Un = VU, ijzs, []24, Uss = VUs.
Then it is obvious that U satisfies the Cauchy Problem (4.9). By Estimate
(4.10), one can write
v - 0}“‘, Moo, 74,02y = «l{U = U)(t, WM pe(io7+),22) = 0.

which provides U = U. As a consequence, the functions

W=U; +il)y,, A= (U; U, Us) and ¢

are the unique solutions to System (1.1)-(1.3). Furthermore, noticing that
W= Ug+ilUs;, Vi =VU, +iVU,,
A, = (Ug Us, Uy) and VA = (VU5 VU, VU;),

one can prove that

Y EC (0,T*), H™ nc' (0,T+), H" ,

A C (0,T+),H™ ¢ (0,T+&",

@ €C(0,T),D"R% , Vo €L (0,T*),H" , . €C (0,T*), H"

which ends the proof of Theorem 1.1. ]

Remark 4.7. Note that it seems for the moment out of reach to solve the
Cauchy Problem for System (1.1)-(1.3) in the energy space defined by

¢ € (0,T)H(R’,C) " (0,7T)L%R’°C),e C(0,T)D"*RR)
Aec (0,7), 0" RR) nct (6,7) LARLRY . (4.11)

However, if we assume that W satisfies the condition:
(B) There exists u € (0, m°) such that

2
m

—s - W(s) = :2 foralls=0,
2 2

then one can prove the following result.

Proposition 4.8. Assume (A) and (B). Then there exists C >0 such that

sup (e, )y + Mgy (t, ez + VAL )z + 1AL )2 =C

te(0,T)
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Proof. First by the energy conservation law (2.6) and from (B), we have

2
IVAIL: < 2E(0),  Ipll.z < ZE(0),

IV -ieAPll, 2 + I, + el 2 + 1A, + Vol = 2E(0).
Now by the interpolation inequality, it follows that llgll,: = Ilwllizllwlliﬁ.

Then by the Sobolev and the triangular inequalities, we get

] =

NPll,s = CIVYPIZE, = C IV -ieAPll,z + lleAgll, -

L2 =

1
z

= C(1+HAlNPN:)T = C(1+NVANLNYIs)
s C+1 1
= C(1+Ylls)? = . +E"”"’"”'

A

A

This implies that llgll z = C and hence IVllz = C. Next we observe that
(1.3) can be written as

-Ap =elm Y(P, + iepy) .

Multiplying this equation by ¢ and integrating over R3, we obtain

IVeliz < lel  [¢]]d: +ieod]|o| dx
R3

= le|lpll = e + iell =Nl s <= CIV @ll,-.
This implies that IVell,.: = C. Finally by the triangular inequality, one has
A, = llA, + Vol + IVell,. = C.

This completes the proof. O

Owning Proposition 4.8 and the conservation law (2.6), it is clear that
every local solutions to (1.1)-(1.3) exists globally in time. To conclude, one
can easily see that (B) implies that the potential term is positive and the
cubic-quintic nonlinearity W (s) = 1553 - ig;s satisfies (B) for large A.
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